skip to main content


Search for: All records

Creators/Authors contains: "Hua, Quan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this study, we present a comprehensive atmospheric radiocarbon (14C) record spanning from 1940 to 2016, derived from 77 single tree rings of Cedrela odorata located in the Eastern Amazon Basin (EAB). This record, comprising 175 high-precision 14C measurements obtained through accelerator mass spectrometry (AMS), offers a detailed chronology of post-1950 CE (Common Era) 14C fluctuations in the Tropical Low-Pressure Belt (TLPB). To ensure accuracy and reliability, we included 14C-AMS results from intra-annual successive cuts of the tree rings associated to the calendar years 1962 and 1963 and conducted interlaboratory comparisons. In addition, 14C concentrations in 1962 and 1963 single-year cuts also allowed to verify tissue growth seasonality. The strategic location of the tree, just above the Amazon River and estuary areas, prevented the influence of local fossil-CO2 emissions from mining and trade activities in the Central Amazon Basin on the 14C record. Our findings reveal a notable increase in 14C from land-respired CO2 starting in the 1970s, a decade earlier than previously predicted, followed by a slight decrease after 2000, signaling a transition towards the fossil fuel era. This shift is likely attributed to changes in reservoir sources or global atmospheric dynamics. The EAB 14C record, when compared with a shorter record from Muna Island, Indonesia, highlights regional differences and contributes to a more nuanced understanding of global 14C variations at low latitudes. This study not only fills critical spatial gaps in existing 14C compilations but also aids in refining the demarcation of 14C variations over South America. The extended tree-ring 14C record from the EAB is pivotal for reevaluating global patterns, particularly in the context of the current global carbon budget, and underscores the importance of tropical regions in understanding carbon-climate feedbacks. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Using paleoecological data to inform resource management decisions is challenging without an understanding of the ages and degrees of time-averaging in molluscan death assemblage (DA) samples. We illustrate this challenge by documenting the spatial and stratigraphic variability in age and time-averaging of oyster reef DAs. By radiocarbon dating a total of 630 oyster shells from samples at two burial depths on 31 oyster reefs around Florida, southeastern United States, we found that (1) spatial and stratigraphic variability in DA sample ages and time-averaging is of similar magnitude, and (2) the shallow oyster reef DAs are among the youngest and highest-resolution molluscan DAs documented to date, with most having decadal-scale time-averaging estimates, and sometimes less. This information increases the potential utility of the DAs for habitat management because DA data can be placed in a more specific temporal context relative to real-time monitoring data. More broadly, the results highlight the potential to obtain decadal-scale resolution from oyster bioherms in the fossil record.

     
    more » « less
    Free, publicly-accessible full text available September 19, 2024
  3. Abstract

    Death assemblages (DAs) are increasingly recognized as a valuable source to reconstruct past ecological baselines, due to the accumulation of skeletal material of non-contemporaneous cohorts. We here quantify the age and time-averaging of DAs on shallow subtidal (5–25 m) rocky substrates and in meadows ofPosidonia oceanicain the eastern Mediterranean. We show that such DAs are very young – median ages 9–56 years – with limited time-averaging, one to two orders of magnitude less than on even nearby soft substrates. On rocky substrates, out-of-habitat transport is likely the main cause of loss of older shells. InPosidonia oceanicameadows, the root and rhizome system creates a dense structure – thematte– that quickly entangles and buries shells and limits the potential for bioturbation. Thematteis, however, a peculiar feature ofPosidonia oceanica, and age and time-averaging in meadows of other seagrass species may be different. The young age of DAs in these habitats requires a careful consideration of their appropriateness as baselines. The large difference in DA age between soft substrates, subject to numerous studies, and hard and seagrass substrates, rarely inspected with geochronological techniques, implies that DA dating is important for studies aiming at using DAs as baselines.

     
    more » « less
  4. Abstract Paleobiological and paleoecological interpretations rely on constraining the temporal resolution of the fossil record. The taphonomic clock, that is, a correlation between the alteration of skeletal material and its age, is an approach for quantifying time-averaging scales. We test the taphonomic clock hypothesis for marine demersal and pelagic fish otoliths from a 10–40 m depth transect on the Mediterranean siliciclastic Israeli shelf by radiocarbon dating and taphonomic scoring. Otolith ages span the last ~8000 yr, with considerable variation in median and range along the transect. Severely altered otoliths, contrary to pristine otoliths, are likely to be older than 1000 yr. For pelagic fish otoliths, at 30 m depth, taphonomic degradation correlates positively with postmortem age. In contrast, no correlation occurs for demersal fishes at 10 and 30 m depth, mostly because of the paucity of very young pristine (<150 yr) otoliths, possibly due to a drop in production over the last few centuries. Contrary to molluscan and brachiopod shells, young otoliths at these depths are little affected and do not show a broad spectrum of taphonomic damage, because those that derive from predation are excreted in calcium- and phosphate-rich feces forming an insoluble crystallic matrix that increases their preservation potential. At 40 m depth, all dated otoliths are very young but rather damaged because of locally chemically aggressive sediments, thus showing no correlation between taphonomic grade and postmortem age. Our results show that local conditions and the target species population dynamics must be considered when testing the taphonomic clock hypothesis. 
    more » « less
  5. Extensive spatial and temporal distribution of high-quality data are essential for understanding regional and global behaviors of the geomagnetic field. We carried out chronological and archaeomagnetic studies at the Angkor-era iron-smelting site of Tonle Bak in Cambodia in Southeast Asia, an area with no data available to date. We recovered high-fidelity full-vector geomagnetic information from the 11th to 14th century for this region, which fill gaps in the global distribution of data and will significantly improve the global models. These results reveal a sharp directional change of the geomagnetic field between 1200 and 1300 CE, accompanied by an intensity dip between 1100 and 1300 CE. The fast geomagnetic variation recorded by our data provides evidence for the possible existence of low-latitude flux expulsion. Related discussions in this paper will inspire a new focus on detailed geomagnetic research in low-latitude areas around the equator, and exploration of related dynamic processes.

     
    more » « less
  6. null (Ed.)
    Global warming causes the poleward shift of the trailing edges of marine ectotherm species distributions. In the semi-enclosed Mediterranean Sea, continental masses and oceanographic barriers do not allow natural connectivity with thermophilic species pools: as trailing edges retreat, a net diversity loss occurs. We quantify this loss on the Israeli shelf, among the warmest areas in the Mediterranean, by comparing current native molluscan richness with the historical one obtained from surficial death assemblages. We recorded only 12% and 5% of historically present native species on shallow subtidal soft and hard substrates, respectively. This is the largest climate-driven regional-scale diversity loss in the oceans documented to date. By contrast, assemblages in the intertidal, more tolerant to climatic extremes, and in the cooler mesophotic zone show approximately 50% of the historical native richness. Importantly, approximately 60% of the recorded shallow subtidal native species do not reach reproductive size, making the shallow shelf a demographic sink. We predict that, as climate warms, this native biodiversity collapse will intensify and expand geographically, counteracted only by Indo-Pacific species entering from the Suez Canal. These assemblages, shaped by climate warming and biological invasions, give rise to a ‘novel ecosystem’ whose restoration to historical baselines is not achievable. 
    more » « less
  7. null (Ed.)
    Abstract. Important uncertainties remain in our understanding of the spatial andtemporal variability of atmospheric hydroxyl radical concentration ([OH]).Carbon-14-containing carbon monoxide (14CO) is a useful tracer that canhelp in the characterization of [OH] variability. Prior measurements ofatmospheric 14CO concentration ([14CO] are limited in both theirspatial and temporal extent, partly due to the very large air sample volumes that have been required for measurements (500–1000 L at standardtemperature and pressure, L STP) and the difficulty and expense associatedwith the collection, shipment, and processing of such samples. Here wepresent a new method that reduces the air sample volume requirement to≈90 L STP while allowing for [14CO] measurement uncertainties that are on par with or better than prior work (≈3 % or better, 1σ). The method also for the first time includes accurate characterization of the overall procedural [14CO] blank associated with individual samples, which is a key improvement over prior atmospheric 14CO work. The method was used to make measurements of [14CO] at the NOAA Mauna Loa Observatory, Hawaii, USA, between November 2017 and November 2018. The measurements show the expected [14CO] seasonal cycle (lowest in summer)and are in good agreement with prior [14CO] results from anotherlow-latitude site in the Northern Hemisphere. The lowest overall [14CO]uncertainties (2.1 %, 1σ) are achieved for samples that aredirectly accompanied by procedural blanks and whose mass is increased to≈50 µgC (micrograms of carbon) prior to the 14Cmeasurement via dilution with a high-CO 14C-depleted gas. 
    more » « less
  8. Abstract Studies of paleocommunities and trophic webs assume that multispecies assemblages consist of species that coexisted in the same habitat over the duration of time averaging. However, even species with similar durability can differ in age within a single fossil assemblage. Here, we tested whether skeletal remains of different phyla and trophic guilds, the most abundant infaunal bivalve shells and nektobenthic fish otoliths, differed in radiocarbon age in surficial sediments along a depth gradient from 10 to 40 m on the warm-temperate Israeli shelf, and we modeled their dynamics of taphonomic loss. We found that, in spite of the higher potential of fishes for out-of-habitat transport after death, differences in age structure within depths were smaller by almost an order of magnitude than differences between depths. Shell and otolith assemblages underwent depth-specific burial pathways independent of taxon identity, generating death assemblages with comparable time averaging, and supporting the assumption of temporal and spatial co-occurrence of mollusks and fishes. 
    more » « less
  9. null (Ed.)
    ABSTRACT The direct carbonate procedure for accelerator mass spectrometry radiocarbon (AMS 14 C) dating of submilligram samples of biogenic carbonate without graphitization is becoming widely used in a variety of studies. We compare the results of 153 paired direct carbonate and standard graphite 14 C determinations on single specimens of an assortment of biogenic carbonates. A reduced major axis regression shows a strong relationship between direct carbonate and graphite percent Modern Carbon (pMC) values (m = 0.996; 95% CI [0.991–1.001]). An analysis of differences and a 95% confidence interval on pMC values reveals that there is no significant difference between direct carbonate and graphite pMC values for 76% of analyzed specimens, although variation in direct carbonate pMC is underestimated. The difference between the two methods is typically within 2 pMC, with 61% of direct carbonate pMC measurements being higher than their paired graphite counterpart. Of the 36 specimens that did yield significant differences, all but three missed the 95% significance threshold by 1.2 pMC or less. These results show that direct carbonate 14 C dating of biogenic carbonates is a cost-effective and efficient complement to standard graphite 14 C dating. 
    more » « less